

BURBERRY

EFFLUENT TESTING TREND ANALYSIS DECEMBER 2025

CONTENTS

1. EXECUTIVE SUMMARY	3
2. INTRODUCTION.....	4
3. METHODOLOGY.....	4
4. TREND ANALYSIS.....	5
4.1 Data Overview	5
4.2 ZDHC MRSL Parameters.....	6
4.3 Heavy Metals	9
4.4 Conventional Parameters.....	11
4.5 Root Cause Analysis.....	12
5. CONCLUSION	12
7. GLOSSARY	13

1. EXECUTIVE SUMMARY

The rising challenges associated with climate change, water security, biodiversity loss and chemical pollution present key risks to both businesses and society. Effectively managing these risks and our ability to deliver on our climate and nature commitments will continue to play a critical role in our long-term resilience and success.

Burberry's Chemical Management Programme supports our ambition to embed sustainable manufacturing practices and protect nature across our value chain. Our approach focuses on eliminating harmful chemicals from our supply chain and drive systemic change across the industry. Through active collaboration with the Zero Discharge of Hazardous Chemicals (ZDHC) Foundation, industry peers, suppliers, and external experts, Burberry contributes to industry-wide transformation aimed at preventing the use and release of harmful chemicals. These efforts support our dedication to protecting people and the planet, mitigating risks and potential adverse impacts throughout our supply chain and beyond.

This report presents the outcomes of effluent testing conducted by Burberry's supply chain partners during the April 2025 and October 2025¹ testing rounds. Comparison with previous testing rounds demonstrates ongoing progress in supply chain alignment with the Zero Discharge of Hazardous Chemicals Wastewater Guidelines (ZDHC WWG).²

The testing results demonstrate improved supply chain performance compared to last reporting year with 99.1% conformance to the ZDHC WWG Manufacturing Restricted Substances List (MRSL) parameters, 97% conformance with conventional parameters, 99.9% conformance for heavy metals.³

¹These results reflect production of the full facility not only for Burberry production.

² ZDHC Wastewater Guidelines

³MRSL and heavy metal adherence is analysed for all manufacturing facilities, whereas Conventional parameters, including anions is applicable to manufacturing facilities with DIRECT discharge during the period under study

2. INTRODUCTION

We remain committed to eliminating hazardous substances across our manufacturing value chain to ensure the safety of our people, planet, and products. Our Chemical Management Programme continues to align with the ZDHC Roadmap to Zero framework. The *Burberry* Manufacturing Restricted Substances List (MRSL)⁴ aligns with the ZDHC MRSL. We are actively implementing the ZDHC Supplier to Zero (S2Z) programme throughout our value chain to ensure the adoption of best practices in sustainable chemical management. Additionally, we implement robust testing programmes: products and raw materials are tested against our Product Restricted Substances List (PRSL)⁵ and effluent is assessed following the ZDHC Wastewater Guidelines (WWG).

Wastewater testing is a critical tool for monitoring potential use of unwanted substances in the supply chain. Our partners are required to conduct effluent testing in accordance with the ZDHC WWG. Test results must be disclosed on the ZDHC Gateway,⁶ a global online platform for registering and sharing chemical management performance data against the ZDHC guidelines. These guidelines provides a unified industry standard that drives continuous improvement in sustainable chemical management and wastewater quality.

This report presents the latest data disclosed on the ZDHC Gateway related to *Burberry* supply chain (April 2025 and October 2025⁷ testing rounds. Hereafter referred as 'reporting period'). This report also tracks performance trends since the establishment of the ZDHC WWG in October 2017, highlighting areas for improvement. Where non-conformities to the ZDHC WWG are identified, partners must carry out a Root-Cause Analysis, develop a Corrective Action Plan, and share the outcomes both on the ZDHC Gateway and with *Burberry*.

Comprehensive testing data from supply chain partners for the reporting period is publicly available on our Codes and Policies [page \(Environment/Chemical Management\)](#).

3. METHODOLOGY

Wastewater analysis is conducted in line with the ZDHC WWG 2.2 methodology. Sampling and reporting are performed by ZDHC Approved Laboratories, ensuring robust, reliable, and comparable data across the value chain. The ZDHC WWG applies to wet processing facilities generating an average daily effluent exceeding 15 m³/day, enabling a targeted approach to monitor chemical use and mitigate environmental impact where it matters most.

This approach ensures that we align with industry guidelines and provides actionable insights that support continuous improvement in wastewater quality across the supply chain.

⁴ *Burberry* MRSL

⁵ *Burberry* PRSL

⁶ ZDHC Gateway

⁷ All tests performed from the 1st of May to the 31st of October are included in the October testing rounds, whereas the tests performed from the 1st of November to the 30th of April are included in April testing round.

4. TREND ANALYSIS

4.1 Data Overview

The April 2025 effluent testing round included 90 facilities, followed by 79 facilities in the October 2025 round, resulting in a total of 111 distinct facilities participating during the reporting period (Figure 1). Test results from both rounds were disclosed on the ZDHC Gateway in line with the ZDHC WWG requirements.

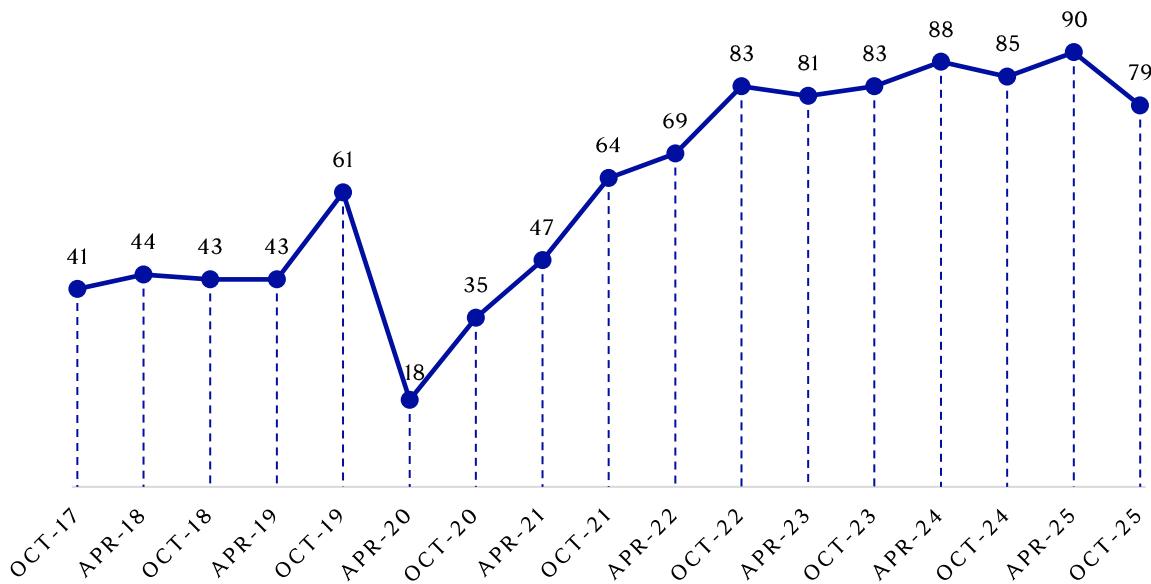


Figure 1: Number of Burberry partner's facilities disclosing effluent test reports on the ZDHC Gateway

Participation in Burberry's ZDHC effluent testing programme reached peak participation in April 2025, with 90 reports published on the ZDHC Gateway. This milestone reflects increased adoption of ZDHC Guidelines by supply chain partners, greater supply chain mapping and connections through the ZDHC Gateway, sustained supply chain engagement and growing industry alignment on wastewater transparency.

Figure 2 provides an overview of participation by facility type (textile or leather) and discharge type (direct⁸ or indirect discharge⁹) during the reporting period.

⁸ Reference: Glossary, definition of direct and indirect facility

⁹ Reference: Glossary, definition of direct and indirect facility

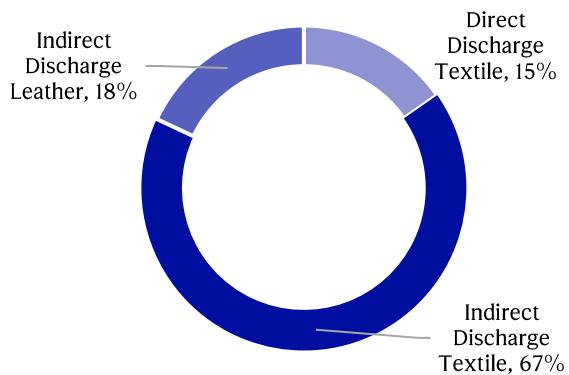


Figure 2: Number of facilities participating in the reporting period

In the reporting period, 78% of the facilities that participated were in Europe, while 22% were in Asia (Figure 3).

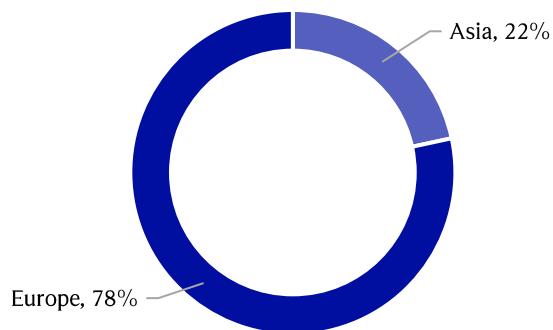


Figure 3: Number of facilities participating in the reporting period by region

4.2 ZDHC MRSL Parameters

According to the ZDHC Wastewater Guidelines (WWG), MRSL parameters are tested prior to effluent treatment, as detections are used to identify the intentional or unintentional use of restricted substances during manufacturing and to support corrective actions at source.

This section assesses adherence to the ZDHC Wastewater Guidelines by summarising MRSL test results, year-on-year trends, and key factors contributing to MRSL detections in effluent across our supply chain.

During the reporting period, overall conformance with MRSL wastewater parameters was 99.1% based on the analysis of 38,337 analytes. This represents an improvement compared with the previous reporting period.

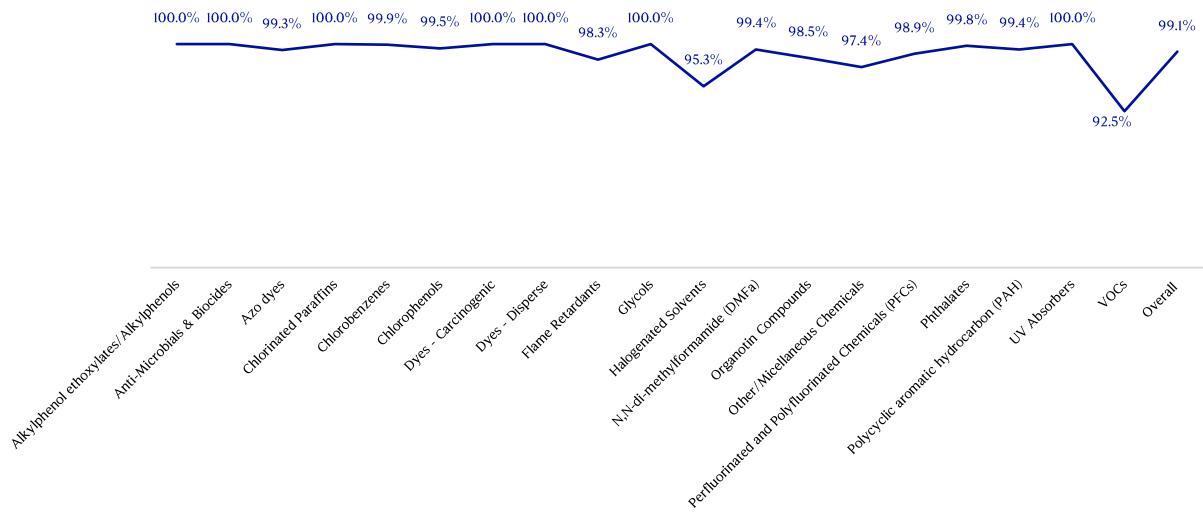
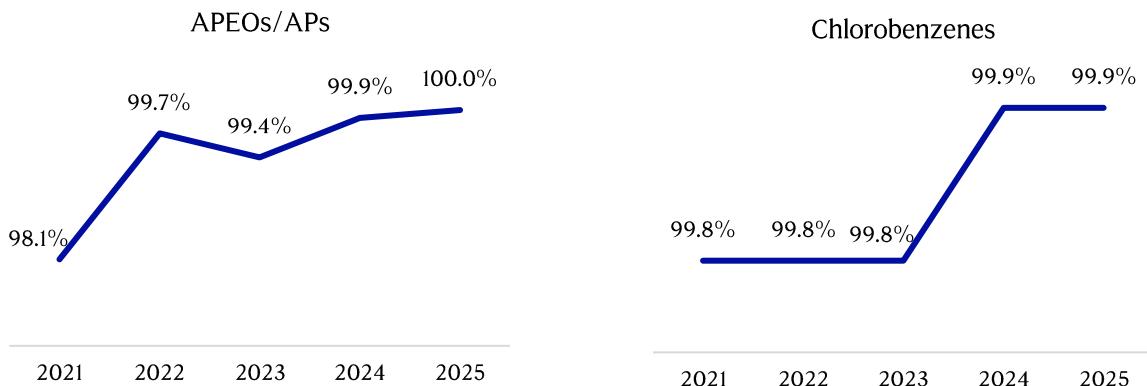



Figure 4: % adherence to ZDHC Wastewater MRL limits per chemical groups in the reporting period

During the reporting period, no detections of APEOs/APs, Anti-microbials & Biocides, Chlorinated Paraffins, Carcinogenic Dyes, Disperse Dyes, Glycols and UV absorbers were identified in wastewater samples, demonstrating conformance to our MRLs.

Detections of Azo dyes, Chlorobenzenes, Chlorophenols, DMFa, Phthalates and PAHs were marginal. Notably, APEOs/APs, Chlorobenzenes, PFCs and Phthalates continue to show improvements on conformance over recent years (refer Figures 5) and indicating increased adoption of safer and more sustainable chemical formulations across the supply chain.

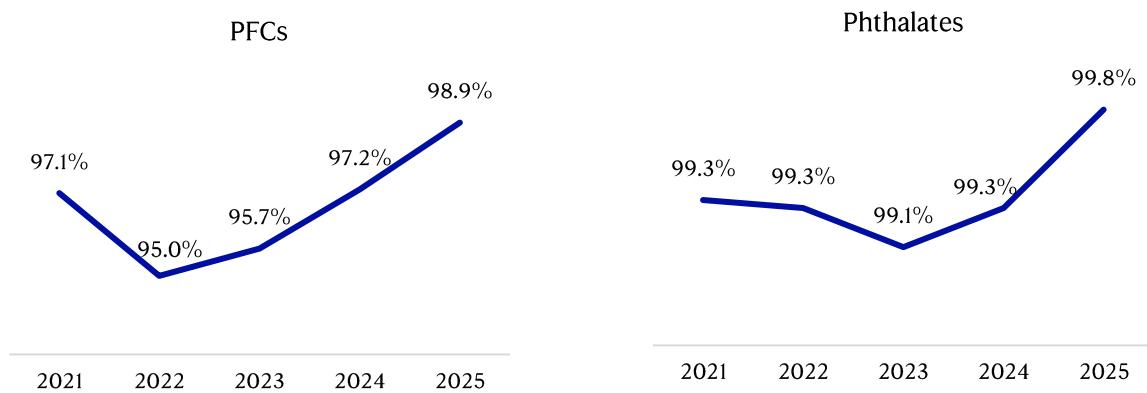


Figure 5: APEOs/APs, Chlorobenzenes, PFCs and Phthalates conformance over the years

In 2025 testing rounds, lowest MRLS conformance demonstrated in VOCs (92.5%) followed by Halogenated Solvents (95.3%) and Other/Miscellaneous Chemicals (97.4%).

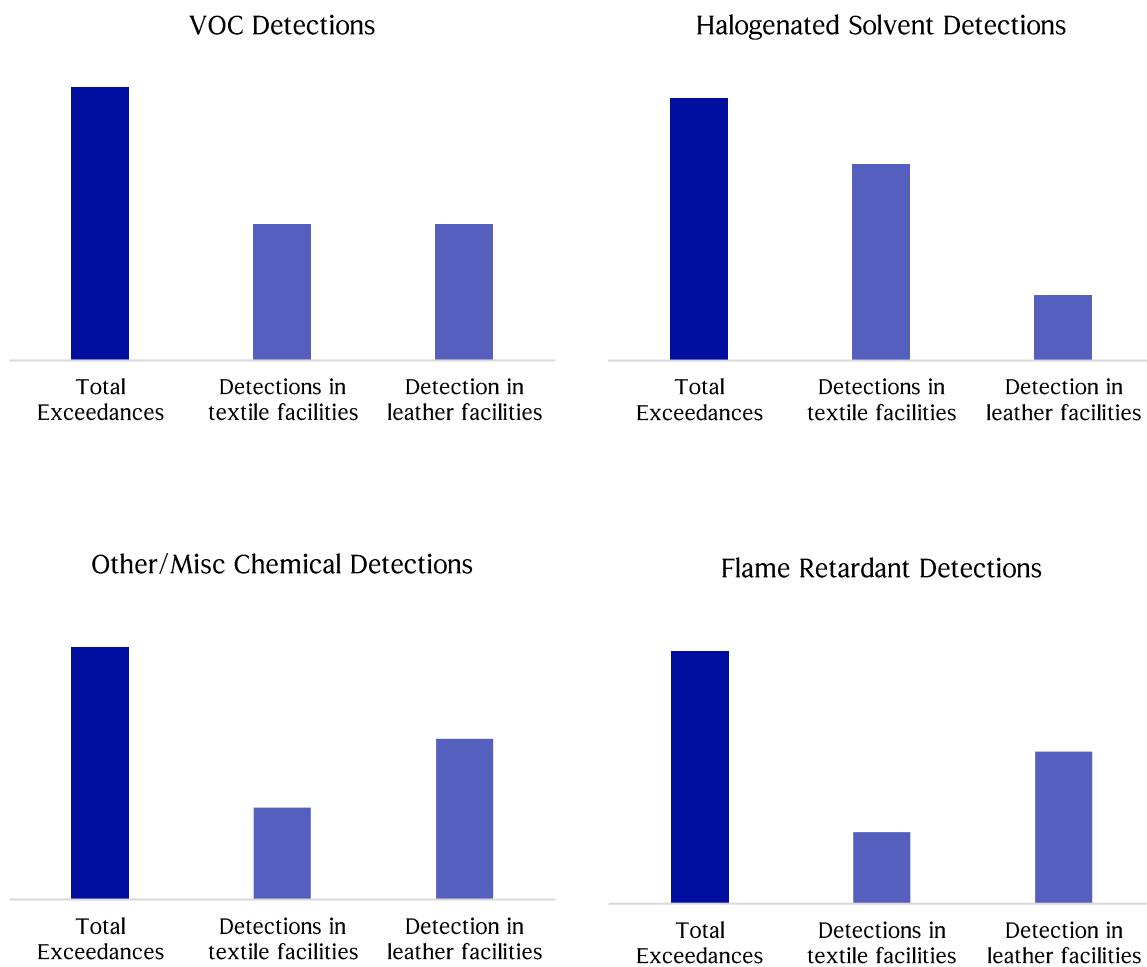


Figure 6: Lowest MRLS performance and its relation to industry sector

VOC recorded the lowest MRSI conformance during the reporting period, with detections distributed equally between textile (50%) and leather (50%) facilities (refer Figure 6). Approximately 62% of VOC detections resulted from isomers of Cresols.

Given that VOCs have been the most frequently detected MRSI parameter, Burberry engaged external technical experts to better understand potential root causes. One potential root cause is degradation of certain chemicals which may not be restricted or complex testing matrixes causing challenges with low quantification limits. While no conclusive link has been identified between these detections and the intentional use of MRSI listed VOCs, Burberry will continue to engage with supply chain partners and industry experts to fully understand presence of these substances.

Halogenated solvents were the second most detected MRSI parameter in the reporting period. As shown in Figure 6, 75% of detections originated from textile facilities. Tetrachloroethylene accounted for 75% of all halogenated solvent detections, with all reported Halogenated Solvent cases occurring at facilities located in Europe. Historical data indicate that Tetrachloroethylene contamination in incoming freshwater has been observed in certain European regions. However, as incoming water testing is not a mandatory requirement under the ZDHC Wastewater Guidelines, such testing was not conducted during this reporting period. As a result, it is not possible to conclusively determine whether freshwater contamination was the root cause of the Halogenated Solvent detections observed.

Most detections within the Other/Miscellaneous Chemicals group were related to Borate, Zinc salt with 64% detections originating from leather sector during the reporting period (refer Figure 6). While no definitive root cause has been identified, these detections frequently coincided with the presence of Boron Flame Retardants¹⁰.

In the reporting period, Boron Flame Retardants detections were predominantly observed in the leather sector (accounting 60% detections of Flame Retardants). Boron Flame Retardants became applicable to leather facilities in the wastewater testing from October 2025 round. No direct correlation has been established between these detections and the intentional use of MRSI listed flame retardants. Further investigations are required to assess potential contributing factors, including analytical methodologies, the presence of Boron due to non-listed flame retardants in the MRSI, and possible upstream raw material contamination.

4.3 Heavy Metals

Heavy metal analysis was conducted in line with the ZDHC WWG which define a three-tiered approach: Foundational, Progressive and Aspirational limits. At a minimum, all facilities should meet the Foundational Limits. Indirect Discharge facilities are required to test for five heavy metals – Arsenic, Cadmium, Chromium (VI), Lead and Mercury in their effluent while Direct Discharge facilities test for all applicable heavy metals as specified in the ZDHC WWG.

During the reporting period, facilities demonstrated overall conformance rate of 99.9% against the ZDHC WWG heavy metal requirements. Mercury was the only heavy metal which did not achieve the 100% conformance, achieving 99% conformance, with the 1% related to Indirect Discharge facilities, that is, facilities with off-site further treatment. All Direct Discharge facilities met the Foundational limits (100% conformance), with 95% of parameters achieving Aspirational level requirements (Refer Figure 7). In the case of Indirect Discharge facilities, 95.8% of parameters met the Aspirational Level requirements (Figure 8).

¹⁰ Boric acid, Diboron trioxide, Disodium octaborate, Disodium tetraborate, anhydrous and Tetraboron disodium heptaoxide, hydrate

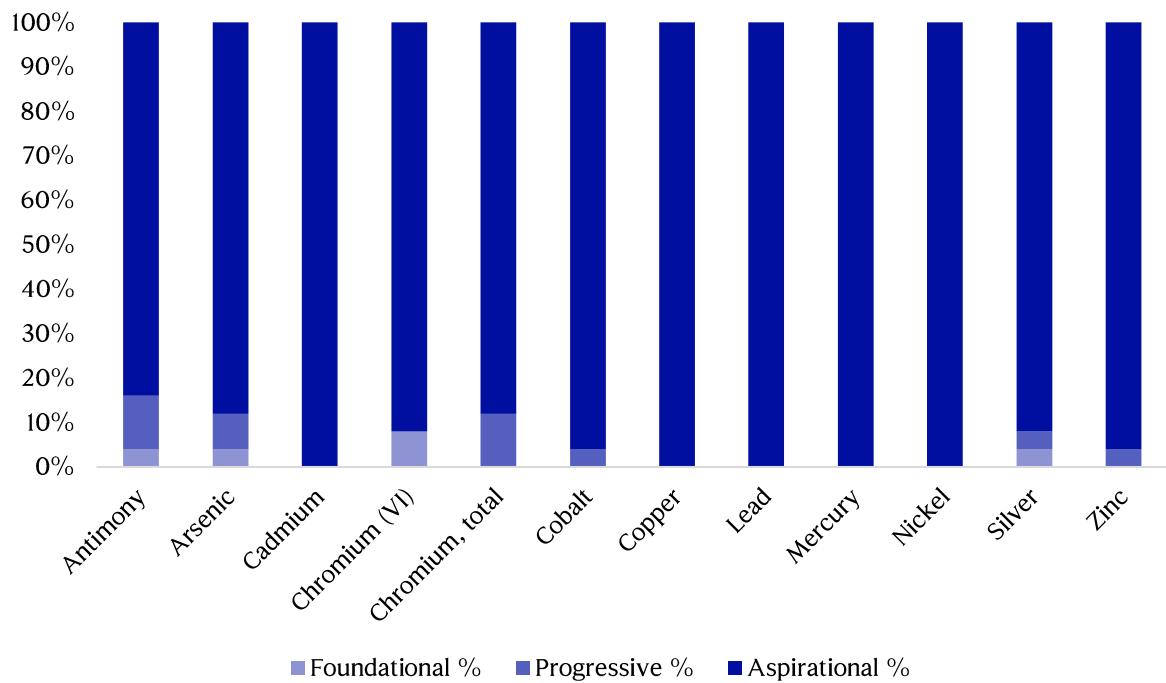


Figure 7: Conformity of Heavy Metals for Direct Discharge facilities

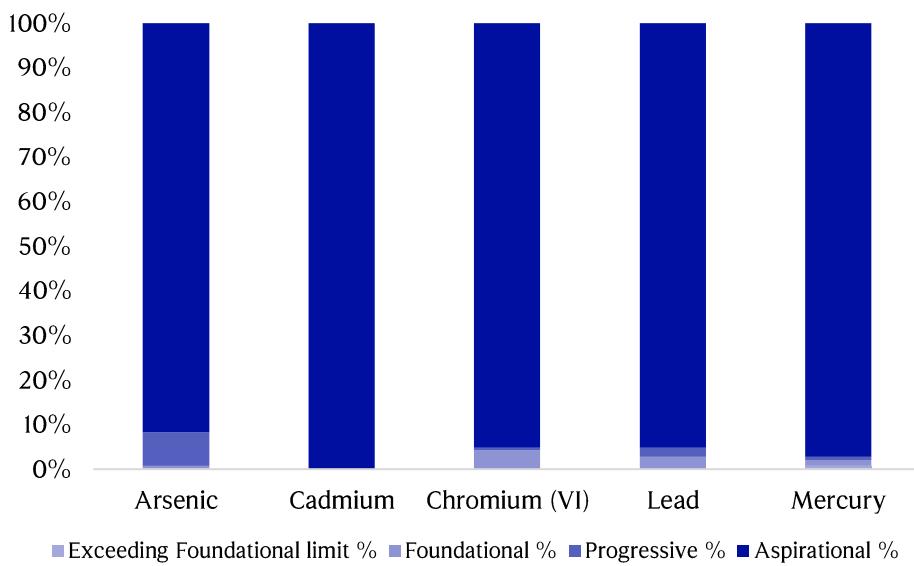


Figure 8: Conformity of Heavy Metals for Indirect Discharge facilities

4.4 Conventional Parameters

Conventional parameter limits play a critical role in assessing the performance of Direct Discharge facilities, where wastewater treatment is carried out on-site, and effluent is discharged directly into water bodies. Some conventional parameters are typically part of the facilities' discharge permits. The ZDHC WWG uses a three-tiered approach: Foundational, Progressive and Aspirational limits on conventional parameters as well. These encourages facilities to drive continuous improvement in wastewater quality, often beyond minimum legal requirements. Evaluation against these levels are exclusively applicable to direct discharge facilities, which represents 15% of participating facilities within this reporting period.

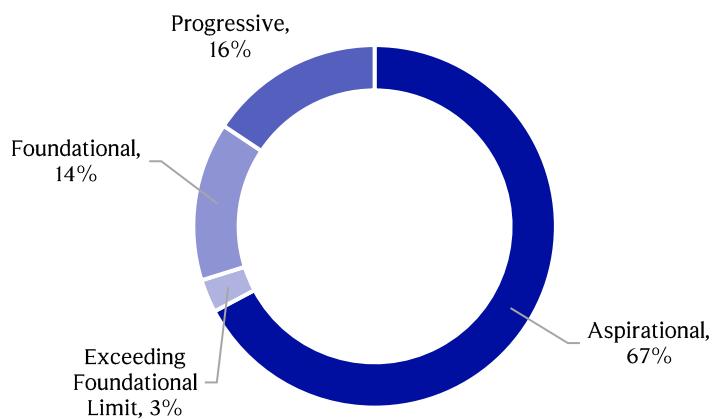


Figure 9: Conformity of Conventional Parameters to WWG limits for Direct Discharge facilities

The results from the reporting period indicate that a high proportion of analytes tested by direct discharge facilities met high environmental standards. During this reporting period, 67% of analytes achieved the Aspirational level, 16% met the Progressive level and 14% fulfilled the Foundational level. Overall, 97% of analytes were conformant with the ZDHC WWG requirements. Full conformance with the ZDHC WWG requirements was observed in Ammonium-Nitrogen, Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Oil and Grease, Persistent Foam, pH, Temperature, Total Chlorine, Total Nitrogen, Total Phosphorus, Total Suspended Solids (TSS), Cyanide, Sulfide and Sulfite. Of the 3% of results not meeting the Foundational limit, 1.9% related to E.Coli with the remaining non-conformities arising from isolated exceedances across other analytes. More detailed data by parameter can be found in Figure 10.

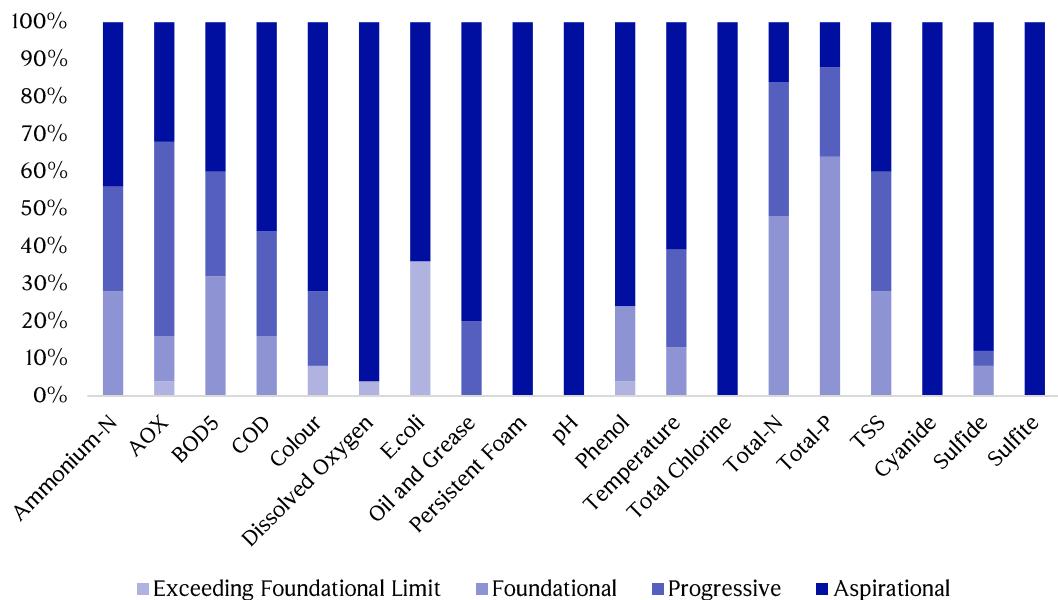


Figure 10: Conformity level of conventional parameters to WWG limits

4.5 Root Cause Analysis

Where non-conformities are identified through wastewater testing, Burberry requires partners to systematically address issues related to MRSI, heavy metals and conventional parameters. This process includes conducting comprehensive Root Cause Analysis (RCA) and developing a Corrective Action Plan (CAP). Partners must submit these documents via the ZDHC Gateway. This structured approach promotes transparency, accountability and timely resolution of non-conformities.

In addition, Burberry has collaborated with external technical experts to further investigate the root causes of MRSI-related non-conformities. This work sought to assess the potential correlation between facility chemical inventories and wastewater detections. Burberry will continue this assessment and remains committed to supporting partners in strengthening chemical management practices and improving overall wastewater quality.

5. CONCLUSION

Burberry is committed to driving systemic change across the industry and eliminating the use of hazardous substances within its supply chain. To achieve this, Burberry remains committed to the ZDHC Roadmap to Zero and consistent implementation of the ZDHC wastewater guidelines (WWG) across its supply chain. Burberry places a strong emphasis on maintaining ethical and environmental standards throughout its chain.

During the reporting period, overall MRSI conformance reached 99.1%. The most frequently detected MRSI parameters were Other/Miscellaneous chemicals, Halogenated Solvents and Volatile Organic Compounds (VOCs). Initial investigations indicate several potential root causes, including the degradation of certain non-restricted chemicals, issues requiring targeted corrective actions, and the possible contribution of substances present in incoming freshwater. Burberry will continue to collaborate with external industry experts to further investigate and address these MRSI non-conformities.

No detections were observed for APEOs/APs, Anti-microbials & Biocides, Chlorinated Paraffins, Carcinogenic Dyes, Disperse Dyes, Glycols and UV absorbers, resulting 100% conformance. Overall conformance rate for conventional parameters was 97%, with 67% achieving the highest level, known as the Aspirational level, according to the ZDHC WWG. Heavy metals demonstrated conformance of 99.9%.

In the event of any non-conformity, partners must conduct a Root Cause Analysis (RCA) and develop a Corrective Action Plan (CAP). This approach is designed to prevent reoccurrence and promote continuous improvement.

As wastewater testing reflects the overall production activities of a facility, not solely those associated with Burberry, our testing programme remains a critical component of Burberry's Chemical Management Programme. It plays a key role in driving systemic change across the industry and supporting the elimination of hazardous chemicals from our supply chain and beyond.

7. GLOSSARY

- **CETP:** Centralized Effluent Treatment Plant.
- **Direct Discharge:** A point source that discharges wastewater to streams, lakes, or oceans. Municipal and industrial facilities that induce pollution through a defined conveyance or system such as outlet pipes are direct dischargers.
- **ETP:** Effluent Treatment Plant.
- **Indirect Discharge:** The discharge of wastewater to a treatment facility not owned and operated by the facility discharging the pollutants, for example a municipal wastewater treatment plant or industrial treatment park.
- **Incoming Water (IW):** Water that is supplied to a manufacturing process, usually withdrawn from surface water bodies, groundwater or collected from rainfall. This includes water supplied by municipalities and condensate from external sources of process stream.
- **Pre-treated Wastewater (Pre-treated WW):** Wastewater that has been pre-treated prior to indirect discharge from the facility to a CETP.
- **Untreated WW:** (previously referred as 'Raw Wastewater') Wastewater that has not yet been treated prior to direct or indirect discharge from the facility, or prior to water recycling efforts.
- **Wet process facility:** facility responsible of carrying out an aqueous stage in its production process.